Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production

نویسندگان

  • Qingyang Xu
  • Fang Bai
  • Ning Chen
  • Gang Bai
چکیده

The implementation of a novel cell recycling technology based on a special disk centrifuge during microbial fermentation process can continuously separate the product and harmful intermediates, while maintaining the cell viability owing to the installed cooling system. Acetate accumulation is an often encountered problem in L-tryptophan fermentation by Escherichia coli. To extend our previous studies, the current study deleted the key genes underlying acetate biosynthesis to improve l-tryptophan production. The deletion of the phosphotransacetylase (pta)-acetate kinase (ackA) pathway in a gltB (encoding glutamate synthase) mutant of E. coli TRTHB, led to the highest production of l-tryptophan (47.18 g/L) and glucose conversion rate (17.83%), with a marked reduction in acetate accumulation (1.22 g/L). This strain, TRTHBPA, was then used to investigate the effects of the cell recycling process on L-tryptophan fermentation. Four different strategies were developed concerning two issues, the volume ratio of the concentrated cell solution and clear solution and the cell recycling period. With strategy I (concentrated cell solution: clear solution, 1: 1; cell recycling within 24-30 h), L-tryptophan production and the glucose conversion rate increased to 55.12 g/L and 19.75%, respectively, 17.55% and 10.77% higher than those without the cell recycling. In addition, the biomass increased by 13.52% and the fermentation period was shortened from 40 h to 32 h. These results indicated that the cell recycling technology significantly improved L-tryptophan production by E. coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)

Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Modification of tryptophan transport system and its impact on production of L-tryptophan in Escherichia coli.

The production of L-tryptophan through chemical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of transport system for aromatic amino acids in L-tryptophan producing strains has not been fully explored. In this study, the fact was revealed that L-tryptophan production and cell growth were affected by the modification of transport syst...

متن کامل

The optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture

Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017